The relay of high-frequency sensory signals in the Whisker-to-barreloid pathway.

نویسندگان

  • Martin Deschênes
  • Elena Timofeeva
  • Philippe Lavallée
چکیده

The present study investigated the operational features of whisker-evoked EPSPs in barreloid cells and the ability of the whisker-to-barreloid pathway to relay high rates of whisker deflection in lightly anesthetized rats. Results show that lemniscal EPSPs are single-fiber events with fast rise times (<500 microsec) that strongly depress at short inter-EPSP intervals. They occur at short latencies (3.84 +/- 0.96 msec) with little jitters (<300 microsec) after electrical stimulation of the whisker follicle. Waveform analysis indicates that one to three lemniscal axons converge on individual barreloid cells to produce EPSPs of similar rise times but different amplitudes. When challenged by high rates of whisker deflection, cells in the whisker-to-barreloid pathway demonstrate a remarkable frequency-following ability. Primary vibrissa afferents could follow in a phase-locked manner trains of sinusoidal deflections at up to 1 kHz. Although trigeminothalamic cells could still faithfully follow deflection rates of 200-300 Hz, the actual frequency-following ability of individual cells depends on the amplitude, velocity, and direction of displacements. The discharges of trigeminothalamic cells induce corresponding phase-locked EPSPs in barreloid cells, which trigger burst discharges at stimulus onset. During the following cycles of the stimulus train, few action potentials ensue because of the strong synaptic depression at lemniscal synapses. It is concluded that the whisker-to-barreloid pathway can relay vibratory inputs with a high degree of temporal precision, but that the relay of this information to the cerebral cortex requires the action of modulators, and possibly phase-locked discharges among an ensemble of relay cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendroarchitecture and lateral inhibition in thalamic barreloids.

Thalamic cells that relay vibrissa information to barrel cortex are clustered within whisker-related modules termed barreloids. Each barreloid receives input from one principal whisker and inhibitory inputs from reticular thalamic neurons with receptive fields that correspond to that same whisker. Although the proximal dendrites of relay cells are confined to their home barreloid, distal dendri...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 17  شماره 

صفحات  -

تاریخ انتشار 2003